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Manifestation of a General Coherent State Superposition in the Presence of
Virtual Photons
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Abstract- In this paper the atom-photon interaction Hamiltonian, known as the Jaynes-Cummings model, without the rotating wave
approximation is diagonalized by an auxiliary operator that commutes with the Hamiltonian. The eigenstates obtained as a
combination of the coherent light and the atomic states. It is shown that choosing the initial state as a linear combination of the
eigenstates, and computing its time evolution and measuring the atomic states, sets the light state to a general superposition of the
coherent states. The well-known Yurke-Stoler state and the even and odd cat states, was obtained as some examples of the method.
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1 Introduction

Simultaneous existence of a cat in both death and
live states introduced in Schrodinger’s thought
experiment [1] is impossible in real macroscopic
world. Nevertheless it has been realized
experimentally [2] through the interaction of atom
with coherent state of light as the closest quantum
mechanical state to the classical light. These
experiments made it possible to study the
boundaries of classical and quantum physics [2],
and have been adopted to test the basic postulates
of quantum mechanics.

Many theoretical methods have been proposed to
construct quantum light superposition. The Yurke-
Stoler state was obtained by the time evolution of
coherent light under a time evolution operator
based on a nonlinear Hamiltonian describing
anharmonic oscillator [3]. Dispersive interaction in
the Jaynes-Cummings model (JCM) when the atom
and photon are largely detuned tends to the even
and odd cat states [4].

In this paper, we obtain a general superposition of
coherent states based on the exact solution of the
JCM. The prominent point of our results is that
despite previousely introduced methods it is free of
any nonlinear effect and don’t need any limitation
on the interaction parameters. Nevertheless, the
general superposition of coherent states converts to
many known superposition states and cat states by
suitable selection of initial states.

2 The JCM Solution

Consider a two level atom by the transition
frequency w, interacting with a single mode of
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optical field of frequency wg for which the
interaction intensity is given by A. In a system of
units for which & = 1, this system describes by
the Hamiltonian

fi= %ﬁz + wpafa+ @t +a)G, +5.) )

in which &, and ata are the atomic transient
operator and the photon number operator,
respectively. The field operator is given by at + 3
and G, +G_ = G, represents the atomic dipole
operator. The product (a7 + &)(G, + &_) models
the atomic dipole interaction that consists of the
terms a'G_, a6, ,a'6, and aG_. First two
terms describe the destruction of an exited atom by
creating a photon and exiting an atom by absorbing
a photon, respectively while the counter-rotating
terms, a6_ and ﬁTﬁJr describe excitation of an

atom simultaneouse with emission of a photon and
destruction of an excited atom by absorbing a
photon, respectively [5]. The photons included in
counter-rotating terms are known as the virtual
photons for which the statics and dynamics are
studied in [6, 7].

We need to obtain the eigenstates of the JCM
Hamiltonian given in the equation (1) as the
substructures of this letter. Toward this end, we use
the convention applied in [8], that is performing a

1/2 Radian rotation of H around y axis,
R(y, /2), to obtain
Ag = —?ax +o@ata+a@t+as, (2
The rotated Hamiltonian Hg, commutes with the
parity operator, Il = &,e™, so they have the
common eigenstates



e +) = Zlle,@), g, —a)] ®
with the eigenvalues
E; = 2272 + wpfal? + A(a + o). To obtain
the eigenstate of the Hamiltonian given by the
equation (1), we just need to operate its
eigenstates, [z 4 ), with the operator, R(y, —1t/2)
to reverse the rotation. The results are

[ W) =2 0e,a) +1g @) + (g —a) — e, —a)] (4)
Factoring out the atomic states in the equation (4),
and  defining |Ce) =|a)y+ | —a) and
|C,) = |y — | — @) reveals that |y ) and [Pr_)
are combinations of the atomic states with the even
and odd cat states, as follows

W) =3 T1e)Co) + 12IC.)] (5)

1
|'-|~'—) - ) [|e)|.§e} + |g)|co)] (6)
The states |W.) and |Us_) given by the equations
(5) and (6) are the eigenstates of the operator (1)
and any given state in a subspace can be
expanded as the linear combination
[W(0)) = cylWy) +e_ W) (7
in which ¢, and c_ are complex numbers.
Operating with the unitary operator,U = et one
can calculate the time evolution of the given state
w(O)as
W) = eBleslwy) +c y)] ®)
From H|W,) = E4[@,) and HlW_) = E_[U_),
one obtaines
[W(t)) = cie™+E[Wy) +c_e™FlU) ©)
that is a general form of Schrodinger’s cat state as
a result of the atom-photon interaction in the
presence of virtual photons.

3 Examples

Here we give some examples to simply convert the
equation (11) to some known cat states.

As the first example, set c; = c_ :% in the
equation (9) to obtain the initial state
[1h(0)) = (1) + W) (10)

Replacing |y, ) and |{s_) from the equations (4)
yields

w(0)) = =Tle) + Ig)la) (12)
that is a normalized initial state in which the atom
is initially in the mixed state and the field in the
coherent state. It is straightforward to obtain the
time evolution of this initial state by using the
equation (9) as

W) =B yy) +e®-ly))  (12)

Some simple calculations after replacing |Ur, ) and
|ys_) from the equations (4), tends to

1 (©) = 222 (cosB(O)[Ig) + le)]ler) —

VZ

isinf()[|g) — |e)]|—a))
(13)

in  which  A(t) = eilerlalPlaraDr  5nq
6(t) = “&%e=2a*, An atomic state measurement in
the equation (13) projects the field state into

0 (©®) = 222 (cosO(0)|a) + isind ()] — ) (14)

f2
The plus aﬁd minus signs appear when the atomic
states detected to be in the excited state and the
ground state, respectively. The field states |at) and
|—a) may be detected with the probabilities
Py = cosz(%ce—mz) and p_ = Sinz(%e_mz)
respectively. At t = 0, one obtains p, = 1 and
p_ = 0 that means the initial state is |a). The

probabilities p, and p_ as functions of « are
plotted in the figure 1.
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Figure 1: The probabilities of detecting |« (solid
lines) and |—a) (dashed lines) for === = 1, left,
and =% = 10, right, based on the equation (14).

Based on the figure 1, in small times, the
probabilities are aperiodic, while for large times,
the probabilities are periodic in some intervals of
a. For sufficiently large times, the initial
probability values will be restored. As shown in
the figure 2, increasing o decreases the frequency
of the probabilities oscillations in time.
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Figure 2: The probabilities of detecting |«} (solid
lines) and |—«} (dashed lines) for & = 1, left and

o = 2, right, based on the equation (14).

The light intensity is a parameter by which the
frequencies of the probabilities can be controlled to
oscillate in time. For @ = m/2 the state given by



the equation (16) converts to the Yurke-Stoller
state

(@) =A®)(Ja) £i| — a)) (15)
as given in [3].

As another example, let ¢, = iﬁ and c_ = —T,ii to
obtain ’

$(0) = 2(19) — 19-)) (16)

That is equivalent to the atom initially in the mixed
state and the field in the coherent state, as

() = Zllg) + )] - a) an
For witch the time evolution is

W (1)) :%(BiE+t|‘|11+)—BiE‘t|l|11—)) (18)
based on the equation (9). Some simple
calculations after replacing |W.) and [Ur_) from
the equations (4), tends to

[y (1) = 22 (—isind(t)[lg) + le)la) +

V2

cos@(t)[|g) — e}l —a))

(19)
An atomic state measurement in the equation (19)
projects the field state into
() = %(—ism&(tﬂa) F cosB(t)| — a)) (20)
The minus sign appears when excited atom detects
and the plus sign appears when detected atom is
measured in ground state. The field states |a) and
|—a) may be detected with the probabilities
py = sin? (%te—mz) and p_ = cos? (%te—mz)

respectively. For %:o the probabilities are

P+ =0 and p_ = 1. The results are similar to
those of the equation (17) but the probabilities p,
and p_ are interchanged. For 8 = m/2 the state
given by the equation (20) converts to

¥ (D) =A@ (—ila) F | —a)) (21)
That is perpendicular to the Yurke-Stoler state
introduced in the equation (15).

Another interesting example can be demonstrated
by ¢, = 1and c_ = 0 to obtain the initial state

[W(0)) = [Wy) (22)
That is equivalent to %[|e)|€o) + |g)|C.)] that

evolves by time according to

[W(t)) = e'B+tyy) (23)
Replacing |y, ) from the equations (4) gives
WD) = Ze™le)Co) + [ICH]  (24)

N
for which, the atomic state measurement switches
the light state to the even or odd cat states with
equal probabilities if the measured atomic state
appears to be in ground or excited states,
respectively.

4 Discussion

Our approach tends to a general superposition of
coherent states by taking into account the role of
virtual photons in the JCM. The even and odd cat
states can be obtained by special selection of the
initial states while the previous method needs a
dispersive atom-photon interaction before entering
the second Ramsey zone. Another striking point of
this work is that it generates the well-known
Yurke-Stoler states by suitable selection of initial
state in the same procedure while it is reported
based on the time evolution of the coherent state
under a nonlinear Hamiltonian governing an
anharmonic oscillator [3]. At last we note that the
virtual photons play the role of nonlinear effects in
the Yurke-Stoler cat states and the role of the
dispersive interaction in the even and odd cat states
and unifies the famous cat states in a simple
interaction. It is another valuable point that these
states are simple examples of the calculated
general cat state and it is possible to extract some
unknown cat states.
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